If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+26x+8=0
a = 5; b = 26; c = +8;
Δ = b2-4ac
Δ = 262-4·5·8
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{129}}{2*5}=\frac{-26-2\sqrt{129}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{129}}{2*5}=\frac{-26+2\sqrt{129}}{10} $
| 3x-2=4{x=7} | | 5x^2+19x+78=0 | | 0.21x+x=250 | | 15x+123=4x+32 | | 7b-15=6b-3 | | 910=q3 | | 4=x-2/x+4 | | (x+3)+(x÷2)=80 | | 5/10=v/8 | | 5/3(27-n)=5+n | | 3x2-32x+16=0 | | -10x-11=21-9x | | 4k-10=2+8k | | 4k-10=28k+ | | -5x+20=-10x+30 | | 12=2(4x-10)-8 | | 7(3w+1)/4=9 | | s2+2s−6=0 | | 5(1/5+x)=9/4 | | d=26+32.5 | | 4x+4=(7x-3) | | |1/5x+3|-10=-2 | | 4(z+5)=324(z+5)=32 | | 3c-12=5+c | | k/4+3=13 | | 8x-1=3x | | 2x=5(x-6) | | 4x-75=57+10x | | y=|-5-3|-5 | | r+(−8)=10 | | 2x-1/4=3/4x | | 2x+84=0 |